
CS152: Computer Systems Architecture
RISC-V Introduction

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Course outline

❑ Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly language and programming conventions

❑ Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

❑ Part 3: Computer Architecture
o Computer Arithmetic
o Simple and pipelined processors
o Caches and the memory hierarchy

❑ Part 4: Computer Systems
o Operating systems, Virtual memory

RISC-V Introduction

❑ We use RISC-V as a learning tool

❑ A free and open ISA from Berkeley
o A clean-slate design using what was learned over decades

o Uncluttered by backwards compatibility

o Simplicity-oriented (Some say to a fault!)

❑ Many, many industry backers!
o Google, Qualcomm, NVIDIA, IBM, Samsung, Huawei, …

RISC-V Introduction

❑ Composable, modular design
o Consists of a base ISA -- RV32I (32 bit), RV64I (64 bit)

o And many composable extensions. Including:
• ‘M’: Math extension. Multiply and divide

• ‘F’, ‘D’: Floating point extensions, single and double precision

• ‘A’: Atomic operations

• ‘B’: Bit manipulation

• ‘T’: Transactional memory

• ‘P’: Packed SIMD (Single-Instruction Multiple Data)

• ‘V’: Vector operators

• Designer can choose to implement combinations: e.g., RV64IMFT

❑ Virtual memory (Sv32, Sv48) and privileged operations specified

We will use RV32I

Structure of the ISA

❑ Small amount of fixed-size registers
o For RV32I, 32 32-bit registers (32 64-bit registers for RV64)

o A question: Why isn’t this number larger? Why not 1024 registers?

o Another question: Why not zero?

❑ Three types of instructions
1. Computational operation: from register file to register file

• xd = Op(xa, xb), where Op ∈ {+, -, AND, OR, >, <, …}

• Op implemented in ALU

2. Load/Store: between memory and register file

3. Control flow: jump to different part of code

RISC-V base architecture components

Register file

…

32-bit words*

x0
x1
x2
x3
x4
x5

x31

Program
Counter

Main memory interface

ALU

Arithmetic Logic Unit

Program
Binary

Working data

…
…

• 32 32-bit registers
• (64 bit words for RV64)

• Input: 2 values, Op
• Output: 1 value

• Actual memory
outside CPU chip

• Current location
in program execution

Op

Op ∈ {+, -, AND, OR, >, <, …}

Super simplified processor operation

inst = mem[PC]

next_PC = PC + 4

if (inst.type == STORE) mem[rf[inst.arg1]] = rf[inst.arg2]

if (inst.type == LOAD) rf[inst.arg1] = mem[rf[inst.arg2]]

if (inst.type == ALU) rf[inst.arg1] = alu(inst.op, rf[inst.arg2], rf[inst.arg3])

if (inst.type == COND) next_PC = rf[inst.arg1]

PC = next_PC
In the four bytes of the instruction,
type, arg1, arg2, arg3, op
needs to be encoded

RISC-V never mixes memory and ALU operations!

A RISC-V Example (“00A9 8933”)

❑ This four-byte binary value will instruct a RISC-V CPU to perform
o add values in registers x19 x10, and store it in x18

o regardless of processor speed, internal implementation, or chip designer

Source: Yuanqing Cheng, “Great Ideas in Computer Architecture RISC-V Instruction Formats”

In the four bytes of the instruction,
type, arg1, arg2, arg3, op
needs to be encoded

Aside: CISC and x86

❑ x86 ISA is CISC (“Complex”)

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017

CS152: Computer Systems Architecture
RISC-V Assembly

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Three types of instructions

1. Computational operation: from register file to register file

2. Load/Store: between memory and register file

3. Control flow: jump to different part of code

Computational operations

❑ Arithmetic, comparison, logical, shift operations

❑ Register-register instructions
o 2 source operand registers

o 1 destination register

o Format: op dst, src1, src2

Arithmetic Comparison Logical Shift

add, sub slt, sltu and, or, xor sll, srl, sra

set less than
set less than unsigned

Shift left logical
Shift right logical

Shift right arithmetic
Signed/unsigned?

Arithmetic/logical?

Computational operations

❑ Register-immediate operations
o 2 source operands

• One register read

• One immediate value encoded in the instruction

o 1 destination register

o Format: op dst, src, imm
• eg., addi x1, x2, 10

Format Arithmetic Comparison Logical Shift

register-
register

add, sub slt, sltu and, or, xor sll, srl, sra

register-
immediate

addi slti, sltiu andi, ori, xori slli, srli, srai

No “subi” instead use negative with “addi”

Aside: Signed and unsigned operations

❑ Registers store 32-bits of data, no type

❑ Some operations interpret data as signed, some as unsigned values

operation Meaning

add d, a, b d = sx(a) + sx(b)

slt d, a, b d = sx(a) > sx(b) ? 1 : 0

sltu d, a, b d = ux(a) > ux(b) ? 1 : 0

sll d, a, b d = ux(a) << b

srl d, a, b d = ux(a) >> b

sra d, a, b d = sx(a) >> b

sx: interpret as signed, ux, interpret as unsigned
No sla operation. Why? Two’s complement ensures sla == sll

Aside: Two’s complement encoding

❑ How should we encode negative numbers?

❑ Simplest idea: Use one bit to store the sign

❑ Is this a good encoding? No!
o Two representations for “0” (“+0”, “-0”)

o Add and subtract require different algorithms

1 1 0 0 1 1 0 1
“0” for “+”
“1” for “-”

= “-77”

Aside: Two’s complement encoding

❑ The larger half of the numbers are simply interpreted as negative

❑ Background: Overflow on fixed-width unsigned numbers wrap around
o Assuming 3 bits, 100 + 101 = 1001 (overflow!) = stores 001

o “Modular arithmetic”, equivalent to following modN to all operations

❑ Relabeling allows natural negative operations via modular arithmetic
o e.g., 111 + 010 = 1001 (overflow!) = stores 001

equivalent to -1 + 2 = 1

o Subtraction uses same algorithm as add
e.g., a-b = a+(-b)

Aside: Two’s complement encoding

❑ Some characteristics of two’s encoded numbers
o Negative numbers have “1” at most significant bit (sign bit)

o Most negative number = 10…000 = -2N-1

o Most positive number = 01…111 = 2N-1 -1

o If all bits are 1 = 11…111 = -1

o Negation works by flipping all bits and adding 1

-A + A = 0
-A + A = -1 + 1
-A = (-1 - A) + 1
-A = ~A + 1

Because -1 is all 1s,
there is no borrowing,
therefore subtracting A from -1 is flipping all bits
e.g.,
111111
-100010
=011101

Return to shifting with two’s complement

❑ Right shift requires both logical and arithmetic modes
o Assuming 4 bits

o (410)>>1 = (01002)>>1 = 00102 = 210

o (-410)>>logical1 = (11002)>> logical1 = 01102 = 610

o (-410)>>arithmetic1 = (11002)>> arithmetic1 = 11102 = -210

o Arithmetic shift replicates sign bits at MSB

❑ Left shift is the same for logical and arithmetic
o Assuming 4 bits

o (210)<<1 = (00102)<<1 = 01002 = 410

o (-210)<<logical1 = (11102)<< logical1 = 11002 = -410

Correct!

For signed values, Wrong!

Correct!

Correct!

Correct!

Three types of instructions

1. Computational operation: from register file to register file

2. Load/Store: between memory and register file

3. Control flow: jump to different part of code

Load/Store operations

❑ Format: op dst, offset(base)
o Address specified by a pair of <base address, offset>

o e.g., lw x1, 4(x2) # Load a word (4 bytes) from [x2]+4 to x1

o The offset is a small constant

❑ Variants for types
o lw/sw: Word (4 bytes)

o lh/lhu/sh: Half (2 bytes)

o lb/lbu/sb: Byte (1 byte)

o ‘u’ variant is for unsigned loads
• Half and Byte reads extends read data to 32 bits. Signed loads are sign-bit aware

Sign extension

❑ Representing a number using more bits
o Preserve the numeric value

❑ Replicate the sign bit to the left
o c.f. unsigned values: extend with 0s

❑ Examples: 8-bit to 16-bit
o +2: 0000 0010 => 0000 0000 0000 0010
o –2: 1111 1110 => 1111 1111 1111 1110

❑ In RISC-V instruction set
o lb: sign-extend loaded byte
o lbu: zero-extend loaded byte

Why doesn’t stores need sign variants?

Three types of instructions

1. Computational operation: from register file to register file

2. Load/Store: between memory and register file

3. Control flow: jump to different part of code

Control flow instructions - Branching

❑ Format: cond src1, src2, label

❑ If condition is met, jump to label. Otherwise, continue to next

beq bne blt bge bltu bgeu

== != < >= < >=

(Assume x1=a; x2=b; x3=c;)

gcc

Control flow instructions – Jump and Link

❑ Format:
o jal dst, label – Jump to ‘label’, store PC+4 in dst

o jalr dst, offset(base) – Jump to rf[base]+offset, store PC+4 in dst
• e.g., jalr x1, 4(x5) Jumps to x5+4, stores PC+4 in x1

❑ Why do we need two variants?
o jal has a limit on how far it can jump

• (Why? Encoding issues explained later)

o jalr used to jump to locations defined at runtime
• Needed for many things including function calls

(e.g., Many callers calling one function)

…
jal x1, function1
…

function1:
…
jalr x0, 0(x1)

Three types of instructions – Part 4

1. Computational operation: from register file to register file

2. Load/Store: between memory and register file

3. Control flow: jump to different part of code

4. Load upper immediate: Load (relatively) large immediate value

Load upper immediate instructions

❑ LUI: Load upper immediate
o lui dst, immediate → dst = immediate<<12

o Can load (32-12 = 20) bits

o Used to load large (~32 bits) immediate values to registers

o lui followed by addi (load 12 bits) to load 32 bits

❑ AUIPC: Add upper immediate to PC
o auipc, dst, immediate → dst = PC + immediate<<12

o Can load (32-12 = 20) bits

o auipc followed by addi, then jalr to allow long jumps within any 32 bit address

Typically not used by human programmers!
Assemblers use them to implement complex operations

Aside: Notably missing: Condition codes

❑ Implicitly managed bitmap of flags
o e.g., Carry, Overflow, Negative, Equal to zero, less than, …

o Flags set by previously executed instruction

❑ Some instructions can execute only if conditions are met
o “Predicated instructions”

o ARM MOVHS (Move higher or same) only moves if previous instruction resulted in
“higher or same” flag being set. Otherwise NOP

o Can remove a costly conditional branch instruction if used well

o Carry bits can be useful for large adds, …

Aside: Notably missing: Condition codes

❑ Predicated instructions in ARM

C Code Without predicated instructions With predicated instructions

Aside: Notably missing: Condition codes

❑ RISC-V does not have this
o Designers wanted simpler communications between pipeline stages

CS152: Computer Systems Architecture
RISC-V ISA Encoding

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

What does the ISA for this look like?

❑ ADD: 0x000000001,
SUB: 0x00000002,
LW: 0x000000003,
SW: 0x00000004, …?

❑ Haphazard encoding makes processor design complicated!
o More chip resources, more power consumption, less performance

RISC-V instruction encoding

❑ Restrictions
o 4 bytes per instruction

o Different instructions have different parameters (registers, immediates, …)

o Various fields should be encoded to consistent locations
• Simpler decoding circuitry

❑ Answer: RISC-V uses 6 “types” of instruction encoding

We’re not going to look at everything…

R-Type encoding

❑ Relatively straightforward, register-register operations encoding

❑ Remember:
o if (inst.type == ALU) rf[inst.arg1] = alu(inst.op, rf[inst.arg2], rf[inst.arg3])

o In 4 bytes, type, arg1, arg2, arg3, op needs to be encoded

R-Type encoding

❑ Instruction fields
o opcode: operation code

o rd: destination register number (5 bits for 32 registers)

o funct3: 3-bit function code (additional opcode)

o rs1: the first source register number (5 bits for 32 registers)

o rs2: the second source register number (5 bits for 32 registers)

o funct7: 7-bit function code (additional opcode, func3 only support 8 functions)

funct7 rs2 rs1 rdfunct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

R-Type encoding

❑ Instruction fields
o opcode: operation code

o rd: destination register number (5 bits for 32 registers)

o funct3: 3-bit function code (additional opcode)

o rs1: the first source register number (5 bits for 32 registers)

o rs2: the second source register number (5 bits for 32 registers)

o funct7: 7-bit function code (additional opcode)

funct7 rs2 rs1 rdfunct3 opcode

7 bits 7 bits5 bits 5 bits 5 bits3 bits

0 21 20 90 51

0000000 10101 10100 01001000 0110011

e.g., add x9,x20,x21

= 0x015A04B316

I-Type encoding

❑ Register-Immediate operations encoding
o One register, one immediate as input, one register as output

Immediate value limited to 12 bits signed!
addi x5, x6, 2048 # Error: illegal operands `addi x5,x6,2048'

Operands in same location!

I-Type encoding

❑ Shift instructions need only 5 bits for immediate (32 bit words)
o Top 7 bits of the immediate field used as func7

o I-Type func7 same location as R-type func7
• Allows efficient reuse of decode circuitry

S-Type and SB-Type encoding

❑ Store operation: two register input, no output
o e.g.,

sw src, offset(base)
beq r1, r2, label Operands in same location!

(Bit width not to scale…)

S-Type

SB-Type

U-Type and UJ-Type encoding

❑ One destination register, one immediate operand
o U-Type: LUI (Load upper immediate), AUIPC (Add upper immediate to PC)

Typically not used by human programmer

o UB-Type: JAL (Jump and link)
Operands in same location!

Relative addressing

❑ Problem: jump target offset is small!
o For branches: 13 bits, For JAL: 21 bits

o How does it deal with larger program spaces?

o Solution: PC-relative addressing (PC = PC + imm)
• Remember format: beq x5, x6, label

• Translation from label to offset done by assembler

• Works fine if branch target is nearby. If not, AUIPC and other tricks by assembler

SB-Type

U-Type

Why is the immediate field 12 bits?

❑ If most immediate values are larger, this instruction is useless!

Benchmark-driven ISA design

❑ Make the common case fast!
o 12~16 bits capture most cases

“CSCE 51: Lecture 03 Instruction Set Principles ,“YonghongYan, University of South Carolina

For immediates For branches

Design consideration:
Consistent operand encoding location

❑ Simplifies circuits, resulting in less chip resource usage

CS152: Computer Systems Architecture
Programming With RISC-V Assembly

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Pseudoinstructions

❑ Using raw RISC-V instructions is complicated
o e.g., How can I load a 32-bit immediate into a register?

❑ Solved by “Pseudoinstructions” that are not implemented in hardware
o Assembler expands it to one or more instructions

Pseudo-Instruction Description

li dst, imm Load immediate

la dst, label Load label address

bgt, ble, bgtu, bleu, … Branch conditions translated to hardware-implemented ones

jal label jal x1, 0(label)

ret Return from function (jalr x0, x1, 0)

…and more! Look at provided ISA reference Why x0, why x1?

RISC-V register conventions

❑ Convention: Not enforced by hardware, but agreed by programmers
o Except x0 (zero). Value of x0 is always zero regardless of what you write to it

• Used to discard operations results. e.g., jalr x0, x1, 0 ignores return address

Source: MIT 6.004 ISA Reference Card Symbolic names also used in assembler syntax

?

Calling conventions and stack

❑ Some register conventions
o ra (x1): typically holding return address

• Saver is “caller”, meaning a function caller must save its ra somewhere before calling

o sp (x2): typically used as stack pointer

o t0-t6: temporary registers
• Saver is “caller”, meaning a function caller must save its values somewhere before calling, if its

values are important (Callee can use it without worrying about losing value)

o a0-a7: arguments to function calls and return value
• Saver is “caller”

o s0-s11: saved register
• Saver is “callee”, meaning if a function wants to use one, it must first save it somewhere, and

restore it before returning

“Save” where? Registers are limited

Calling conventions and stack

❑ Registers saved in off-chip memory across function calls

❑ Stack pointer x2 (sp) used to point to top of stack
o sp is callee-save

o No need to save if callee won’t call another function

❑ Stack space is allocated by decreasing value
o Referencing done in sp-relative way

❑ Aside: Dynamic data used by heap for malloc

0

max
Typical memory map

Data in
program binary

Program binary

Example: Using callee-saved registers

❑ Will use s0 and s1 to implement f

Source: MIT 6.004 2019 L03

Example: Using callee-saved registers

Stack

(Used space)

…
…

sp

Before function call

Stack

(Used space)

Saved s0

Saved s1

…
…

sp

During function call

Stack

(Used space)

Saved s0

Saved s1

…
…

sp

After function call

Example: Using caller-saved registers
Caller Callee

Why did the caller save s1?
We don’t know which registers callee will use
Caller must save all caller-save registers it cares about

Source: MIT 6.004 2019 L03

ra is saved, meaning even if callee calls another
function, caller can still retrieve its ra

Rule of thumb for register conventions

❑ Assume function “foo” calls function “bar”

❑ There are two sets of general purpose registers, t’s (t0-t6) and s’s (s0-s11)
o Saved registers (s’s) are callee-save, meaning “bar” must store them somewhere if

it wants to use some

o Temporary registers (t’s) are caller-save, meaning “foo” must save them
somewhere if it wants their values to be the same after returning from “bar”

❑ Argument registers (a’s) are caller-save
o If “bar” wants to call another function “bar2”, it must save the a’s it was given,

before setting them to its own arguments (which is natural)

Rule of thumb for register conventions

❑ Rule of thumb for saved registers
o For computation ongoing across function (“bar”) calls, use s’s

o Simple to just use s’s for most register usage

o Each function (“bar”) stores all s’s (it plans to use) in the stack at beginning, and
restore them before returning

❑ Rule of thumb for temporary registers
o Use t’s for intermediate values that are no longer important after the function call,

for example calculating arguments for “bar”.

o “Foo” must store t’s in stack (if it wants their values to persist) before calling “bar”,
but simpler to just restrict use of t’s for values we don’t expect to persist

Rule of thumb for register conventions

❑ TL;DR: Only use callee-save registers for computation (s’s)
o At beginning of function: store ra and all s’s it will use

o At end of function: restore ra and all s’s from stack

o Of course, a’s must be handled accordingly (caller-save)
• Before “foo” calls “bar”, “foo” stores all a’s in stack

• After “bar” returns, restores all a’s from stack (after copying return value from a0, etc)

Aside: Handling I/O

❑ How can a processor perform I/O?

❑ Special instructions? Sometimes!
o RISC-V defines CSR (Control and Status Registers) instructions

o Check processor capability (I/M/E/A/..?), performance counters, system calls, …

o “Port-mapped I/O”

❑ For efficient communication, memory-mapped I/O
o Happens outside the processor

o I/O device directed to monitor CPU address bus, intercepting I/O requests
• Each device assigned one or more memory regions to monitor

Example:
In the original Nintendo GameBoy, reading from address 0xFF00
returned a bit mask of currently pressed buttons

Aside: Handling I/O

❑ Even faster option: DMA (Direct Memory Access)
o Off-chip DMA Controller can be directed to read/write data from memory without

CPU intervention

o Once DMA transfer is initiated, CPU can continue doing other work

o Used by high-performance peripherals like PCIe-attached GPUs, NICs, and SSDs
• Hopefully we will have time to talk about PCIe!

o Contrast: Memory-mapped I/O requires one CPU instruction for one word of I/O
• CPU busy, blocking I/O hurts performance for long latency I/O

